### 2018

# PHYSICS — HONOURS

## Sixth Paper

#### Full Marks - 100

The figures in the margin indicate full marks

Candidates are required to give their answers in their own words as far as practicable

Answer Question No. 1 and four each from Unit - 11 and Unit - 12

#### 1. Answer any ten of the following:

 $2 \times 10$ 

- (a) A nucleus with mass number A=235 splits into two spherical fragments whose mass numbers are in the ratio 3:2. Find the separation between the centres of the fragments at the time of splitting. Given: nuclear radius parameter  $R_0=1.3$  fm.
- (b) Determine the ground state spin parity of <sub>9</sub>F<sup>19</sup> in the context of single particle shell model.
- (c) The decay  $\Xi^- \to \Lambda^0 + \pi^-$  is observed in nature, whereas the apparently similar decay  $\Xi^- \to n^0 + \pi^-$  is never observed. Why?
- (d) Explain why a Geiger counter cannot measure the energy of a moving charged particle.
- (e) A 0.01 mm thick  ${}^{7}_{3}$ Li target is bombarded with  $10^{13}$  protons per second. As a result,  $10^{6}$  neutrons per second are produced. What would be the cross-section for this reaction? (The density of Li =  $500 \text{ kg/m}^3$ ).
- (f) In a mass spectrometer study of an ion, the following values of  $\left(\frac{q}{m}\right) \text{ are observed}: 4.81\times10^6\text{ C Kg}^{-1}, 9.62\times10^6\text{ C Kg}^{-1}, 4.56\times10^6\text{ C Kg}^{-1} \text{ and }$

4.35×10<sup>6</sup> C Kg<sup>-1</sup>. Explain the observation.

- (g) What is the basic physical principle responsible for the origin of energy bands rather than specific energy levels in a crystalline solid?
- (h) What are the differences of energy gap seen in superconductor and semiconductor?
- (i) Sketch the spontaneous magnetization as a function of temperature.
   Indicate the universal feature associated with the graph.
- (j) In a drop of water of radius  $10^{-3}$  m, the molecular dipoles are pointed in the same direction. If the dipole moment of the water molecule is  $6 \times 10^{-30}$  c-m, calculate the polarization.

[Turn Over]

- (k) Estimate the molecular field for a ferromagnetic material having Curie temperature 500 K.
  - (1) Obtain an expression for bulk modulus of a free electron gas.

# Unit – 11 (Nuclear and Particle Physics)

- 2. (a) Derive an expression for the 'surface energy' of a uniformly charged liquid drop and hence write down the corresponding term in the semi-empirical mass formula. Clearly mention the assumptions.
  - illed? 2+1
  - (b) Write down the nuclear 'magic numbers'. Why are they so called?
- 3

4

- (c) Show that  $\gamma \rightarrow e^+ + e^-$  process cannot take place in vacuum.
- 3. (a)  $^{212}_{84}Po$  emits alpha-particles of energy 10.54 MeV. Give an estimate of the barrier height faced by the alpha-particle in order to come out of the nucleus. Hence, comment on the relatively long lifetime of lower energy alpha-emitters.
- 4+2
- (b) Discuss the significance of the end-point energy in the  $\beta$ -decay spectrum using a proper sketch.
- 2
- (c) When a nucleus exists in an excited state of spin-parity  $\frac{5}{2}^+$  and subsequently decays by a transition having multipolarity M2, what will be the spin-parity of the final state? Justify your answer.

2

4. (a) The change of the energy of the spherical nucleus distorted to an ellipsoid is given by

$$\Delta E = \frac{\epsilon^2}{5} \left[ 0.035 \text{ A}^{\frac{2}{3}} - \frac{7.73 \times 10^{-4} \text{ z}^2}{\text{A}^{\frac{1}{3}}} \right]$$

where  $\in$  is the eccentricity of the ellipsoid.

- (i) Identify the origin of the above two terms.
- (ii) Obtain the condition of spontaneous fission. Hence, discuss

the nature (stable/unstable) of 92 U<sup>238</sup>.

2+1+1

- (b) Outline the similarities between a nucleus and a liquid drop. Why the Weizsacker mass formula is called the semi-empirical mass formula?
  - 3+1
- (c) Estimate the critical mass of a sphere of  $_{92}U^{235}$ , assuming that the fission and radiative capture cross-sections are equal. The absorption cross-section for fission neutrons is 5 barns. The density of uranium is  $18 \times 10^3$  kg m<sup>-3</sup>.

2

5. (a) Calculate the minimum energy required to be given to the neutron in order that the following nuclear reaction may occur:

$${}_{0}^{1}n + {}_{15}^{31}P \rightarrow {}_{14}^{31}Si + {}_{1}^{1}H$$

Given the masses (in amu):

| M    | $\binom{1}{0}n$ | = 1.008665, M | $\binom{31}{15}P$ | = 30.973766, | М   | 31 <sub>14</sub> Si | = 30.975349 |
|------|-----------------|---------------|-------------------|--------------|-----|---------------------|-------------|
| - 39 |                 |               | ( )               | ,            | - 1 |                     | 1           |

and  $M\binom{1}{1}H = 1.007825$ .

3

(b) Which compound system was produced in Ghosal's Experiments and in how many ways? How did the results corroborate with the Bohr's hypothesis of compound nucleus?

1+2

(c) Discuss the validity and limitations of compound nucleus hypothesis.

2+2

6. (a) What is the role of resonance in the operation of a cyclotron? Derive the expression for energy of the emitted particle from a cyclotron and hence define K-factor of the machine.

1+2+1

(b) What do you mean by plateau region of a GM counter? A GM counter has dead time of  $200~\mu s$ . What are the true counting rates when the observed rates are 1000~per minute?

2+2

(c) What are the end products in a P-P chain reaction? Explain.

2

7. (a) What is Lepton Family (LF) number? Check whether LF number is violated in the decay  $\mu^- \to e^- \overline{\nu}_e \, \nu_\mu$ .

1+2

- (b) What is strangeness? Name a particle with non-zero strangeness. Is it a good quantum number under all fundamental interactions? 1+1+1
  - (c) Explain why the following processes are not allowed.
    - (i)  $p \rightarrow \pi^0 + e^+$
    - (ii)  $p + \pi^0 \rightarrow \overline{p} + \pi^+ + \pi^+$
    - (iii)  $n \rightarrow p + e^{-}$
    - (iv)  $e^- \rightarrow v_e + \gamma$  (photon).

1+1+1+1

### Unit - 12

#### (Solid State Physics)

- 8. (a) Draw an FCC lattice structure. Show that it has packing fraction of 0.74. Compare it with that of a simple cubic lattice structure.
- (b) Find the Miller indices of a plane that makes an intercept of  $3\text{\AA}$ ,  $4\text{\AA}$  and  $5\text{\AA}$  on the coordinate axes of an orthorhombic crystal with a:b:c=1:2:5.

2

(c) A beam of thermal neutrons emitted from the opening of the reactor is diffracted by the (111) planes of nickel crystal at an angle of 28°30′. Calculate the effective temperature of the neutrons. Nickel has FCC structure and its lattice parameter is 3.52Å.

4

9. (a) Distinguish between density of states, g(E) and density of occupied electron states, N(E) of non-relativistic free electron in 3d at T=0 with suitable diagrams.

2+1

[Turn Over]

| (b) What is meant by relaxation time of free electrons? Hence, derive                                                                                                |     |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|
| Wiedemann-Franz law from free electron theory.                                                                                                                       | 1+4 |  |  |
| (c) The Fermi energy of silver is 5.5 eV. Calculate the fraction of free                                                                                             |     |  |  |
| electrons at room temperature (300K) located within a width of K <sub>B</sub> T on either                                                                            |     |  |  |
| side of the Fermi energy.                                                                                                                                            | 2   |  |  |
| 10. (a) What do you mean by "effective mass" of an electron in a solid?                                                                                              | _   |  |  |
| Under what condition, the effective mass of electron is equal to its free electron                                                                                   |     |  |  |
| mass?                                                                                                                                                                | 2+1 |  |  |
| (b) Consider the dispersion relation of tightly bound electrons in a                                                                                                 | 271 |  |  |
| two-dimensional square lattice of lattice constant a as:                                                                                                             |     |  |  |
| $E = E_0 - \alpha - 2\beta(\cos k_x a + \cos k_y a)$ ; $E_0$ , $\alpha$ , $\beta$ are constants.                                                                     |     |  |  |
| (i) Find the energy bandwidth.                                                                                                                                       |     |  |  |
|                                                                                                                                                                      | 2.2 |  |  |
| (ii) Obtain an expression of effective m* for small values of K.                                                                                                     | 2+2 |  |  |
| (c) Calculate the Hall coefficient in a solid where both electrons and                                                                                               | 2   |  |  |
| holes contribute to the Hall effect.                                                                                                                                 | 3   |  |  |
| 11. (a) Clearly explaining the basic assumptions, derive Clausius-Mosotti                                                                                            |     |  |  |
| relation for a dielectric. Explain how it modifies when more than one dielectric is                                                                                  |     |  |  |
| present.                                                                                                                                                             | 4+2 |  |  |
| (b) Find the magnetic field B <sub>0</sub> which has to be applied to paramagnetic                                                                                   |     |  |  |
| salt containing ions with $\mu_{m_j} = \pm \mu_B$ so that x percent of these ions is in the                                                                          |     |  |  |
| lowest energy state.                                                                                                                                                 | 4   |  |  |
| 12. (a) The Curie temperature of iron is 1043K. Assume that iron atoms,                                                                                              |     |  |  |
| when in metallic form, have moments of $2\mu_{B}$ per atom. Iron is BCC with lattice                                                                                 |     |  |  |
| parameter $a = 0.286$ nm. Given $\mu_B = 5.7884 \times 10^{-5}$ eV.T <sup>-1</sup> . Calculate (i) the                                                               |     |  |  |
| saturation magnetization, (ii) the Curie constant.                                                                                                                   | 4   |  |  |
| (b) In an assembly of 10 <sup>23</sup> harmonic oscillators, each has a frequency                                                                                    |     |  |  |
| of 10 <sup>13</sup> Hz. Calculate (ignoring the zero point energy) the mean thermal energy of                                                                        |     |  |  |
| the system at 20K. What is the value of Einstein temperature of such a system?                                                                                       |     |  |  |
| Explain significance of the relations used.                                                                                                                          | 4+2 |  |  |
| 13. (a) Explain "isotope effect" in superconductivity. Briefly discuss its                                                                                           |     |  |  |
| significance.                                                                                                                                                        | 2+1 |  |  |
| (b) Derive the behaviour of magnetic field inside the superconductor.                                                                                                | 271 |  |  |
| Hence, define the characteristic length scale.                                                                                                                       | 2+1 |  |  |
| (c) The phonon dispersion relation for a vibrating diatomic chain in                                                                                                 | 271 |  |  |
| which alternate atoms are M <sub>1</sub> and M <sub>2</sub> is given by                                                                                              |     |  |  |
|                                                                                                                                                                      |     |  |  |
| $\omega^2 = K_1 \left( \frac{1}{M_1} + \frac{1}{M_2} \right) \pm K_1 \left  \left( \frac{1}{M_1} + \frac{1}{M_2} \right)^2 - \frac{4\sin^2 ka}{M_1 M_2} \right ^{2}$ |     |  |  |
|                                                                                                                                                                      |     |  |  |
| $\left(K_1 = \text{force constant}; \ k = \frac{2\pi}{\lambda}\right)$                                                                                               |     |  |  |
|                                                                                                                                                                      |     |  |  |
| Identify and obtain the minimum and maximum angular frequencies                                                                                                      | 2+2 |  |  |
| of the acoustical and optical branch.                                                                                                                                |     |  |  |